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The pionic decays of hyperons are analyzed in terms of the pole approximation of Feldman, Matthews, 
and Salam and the preceding paper. It is found that all the available experimental data are consistent with 
the universal weak coupling scheme, provided all the strong coupling constants have the same magnitude as 
the usual pion-nucleon coupling constant. In this universal weak coupling scheme, all the (dimensionless) 
weak coupling constants which appear in the residues of the pole terms have the same magnitude as the 
weak coupling constant determined in the preceding paper for the leptonic decays of pions and kaons. It is 
argued that this scheme is a dispersion theoretic version of the usual V-A theory of the weak interaction. 
The above universal coupling scheme predicts unambiguously that the 61 wave dominates in 2 + —> n-\-Tr+ 

and the P wave dominates in S~ —-> n-\-iT, and also establishes some of the relative signs of the strong 
coupling constants. It is shown that there appears no other universal scheme of both the strong and weak 
coupling constants. In particular, the above universal weak coupling scheme is not compatible with the 
usual unitary symmetry relations for the strong coupling constants, though this conclusion depends very 
sensitively on the mixing parameter in the unitary symmetry relations. The main consequences and a dis­
cussion of the above universal coupling scheme are given in the last section. 

I. INTRODUCTION 

IN the preceding paper,1 a dispersion theoretic 
approach to two-body weak decays was studied, in 

which the masses of particles are regarded as constants. 
An analyticity assumption is introduced for the 
invariant decay amplitudes defined off the energy-
momentum shell, which are invariant functions of three 
invariant variables. In this approach, the invariant 
decay amplitudes for the leptonic decays of pions and 
kaons are constants and, therefore, can be regarded 
essentially as the weak coupling constants. It was 
found1 that the weak coupling constants defined in this 
way are independent not only of the charged lepton 
being the electron or the muon, but also of the decaying 
particle being the pion or the kaon. In the case of the 
pionic decays of hyperons, the invariant decay ampli­
tudes have three kinds of poles and cuts, each corre­
sponding to the three invariant variables. The pole 
terms are identical with those assumed in the pole 
approximation due to Feldman, Matthews, and Salam.2 

The purpose of the present work is to discuss the 
question of whether or not the above universality of 
the weak coupling constants can be extended to the 
pionic decays of hyperons. For this purpose, we assume 
in the present work that the invariant decay amplitudes 
are approximated reasonably well by the pole terms 
alone (referred to hereinafter as the pole approxima­
tion). We assume also that the charge independence is 
valid in the strong interaction and the selection rule, 
AI=^, is applicable to the weak interaction. The 
electromagnetic interaction is ignored in the pole 
approximation. 

* Work supported by the National Science Foundation. 
f On leave of absence from Hokkaido University, Sapporo, 

Japan. 
1 M . Sugawara, preceding paper, Phys. Rev. 135, B252 

(1964). 
2 G. Feldman, P. T. Matthews, and A. Salam, Phys. Rev. 121, 

302 (1961). 

We summarize the pole approximation1'2 in Sec. II. 
The residues of the pole terms are expressed in terms of 
various strong and weak coupling constants. The 
dimensionless weak coupling constants are defined in 
Sec. I l l , referring to some mass units. The possible 
significance of these mass units is also discussed. All 
the available experimental data are analyzed in Sec. IV 
to determine whether these data are consistent with 
the universality, in the sense that the above dimension­
less weak coupling constants all have the same magni­
tude as that determined for the leptonic decays of 
pions and kaons.1 It turns out that this is actually the 
case if all the strong coupling constants also have the 
same magnitude as the known pion-nucleon coupling 
constant. There does not seem to be any other universal 
scheme of both the strong and weak coupling constants 
as long as the pole approximation is approximately 
valid. We summarize in Sec. V the main results of the 
present work and, in particular, those consequences of 
the above universal coupling scheme which can be 
tested experimentally. A theoretical discussion of this 
universal scheme is also given. 

II. POLE APPROXIMATION 

In the first order of the weak Hamiltonian, Hw(x), 
the matrix element for a hyperon with four-momentum 
p to decay into a nucleon (or A in the S decay) and a 
pion with four-momentum q is given by3 

(p', q\Hw(0)\p)= (i/VWo)(u(p%Fy5+Ff2u(p)) , (1) 

where u's are free Dirac spinors, normalized as u^u= 1, 
u(pf) stands for u^(p')y^ qo is the relativistic energy of 
the pion, and the invariant decay amplitudes F and Fr 

are dimensionless. On the left-hand side of (1) [and also 
in (2) and (3) below], the operator and the state vectors 

3 The units, h = c=l, are used throughout this paper. The 
notation of four-momentum q is such that the space components 
are those of three-momentum and the fourth component is iqo. 
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are in the exact Heisenberg picture in which all the 
strong Hamiltonian Hs (%) is included. 

In the pole approximation,1-2 F and Ff consist of the 
pole terms which correspond to the diagrams summa­
rized in Fig. 1. The residues of these pole terms are 
expressed in terms of various strong and weak coupling 
constants. For example, the strong vertex in the first 
diagram for A —» p-\-ic~ gives rise to the pion-nucleon 
coupling constant gNN defined by 

(pP\5Hs(0)/8(l>(0)\pn)=MgNN(z)(u(pp)ybu(pn)), (2) 

where z= — (pP—pn)2 and <j>(%) is the pion field operator. 
The weak vertex in the same diagram gives rise to the 
weak coupling constants (INA and GNA defined by 

(INK=UNA (Z=0) , (INA' = UNA ( 0 = 0 ) , 

(pn\Hw(0)\pA) 
= {^{pn)[_aNA{z)+aNA (z)y{]u{pA)} , (3) 

where z= — (pn—pA)2. Instead of analogous definitions 
for other coupling constants, the effective Hamiltonians 
are given below which give those coupling constants 
which are defined in the present work when the lowest 
order matrix elements are evaluated with respect to the 
particles joining the vertices in question. The strong 
effective Hamiltonian is 

Hs = igNN(Ny5i;N) -w+figAs^TsS) -re+Hx.} 

+gss(SY 5 X S) •*+igEs(HY5*H) •« 

+ {igNA(NybA)K+igN^(Nybx'^)K 

+igAz(3ysA)Kc+igzz(Ey^-V)Kc+H.c.}, (4) 

where 

N--O -C). O - *-(-*) 
(5) 

tt = {(7r++7T-)/v2, i(Tr+-TT-)/V2, 7T0} , 

33 = { (S++2-) /v2 , f ( S + - S - ) / v 5 , 2°} . 

The weak effective Hamiltonian is 

Hw=aNANA+aN2(^P2+- N2°)+aAzAE° 

+a^(^°S°+^/22-3-)+aNAfNy,A 

+aNz (^Py£+-Ny&°)+aAzZy&° 

+a s s
, (2 0 75S 0 +v52-75S-) 

+a7rK(y/2T+K--w0K0)+JI.c. (6) 

In (4) and (6) (and also in all the effective Hamiltonians 
hereafter), the particle symbols stand for the respective 
field operators. The expression (4) assumes nothing but 
the charge independence for Hs(x), and the expression 
(6) assumes only the selection rule A / = | for Hw(%)» 
All the coupling constants defined by (4) and (6) are 
real, if Hs(%) and Hw(%) are time-reversal invariant. 

A - P + » ; 

2 - P+*°, 

2 * - N + T \ 

X -H+V-, 

S"- A+ w\ 

FIG. 1. Diagrams which give rise to the pole terms in F and Ff 

denned by (1) are shown for various pionic decays of hyperons. 
The shaded circles stand for the strong vertices, and the open 
circles are the weak vertices. 

In terms of the above coupling constants, F and Ff in 
(1) are given in the pole approximation by1 

F=^2gNNaNA(Mn+MA)/(MA
2-Mn2) 

+^2gA2aNz(M?++Mp)/(MJ?-M^) 

+V2gNAaTK/ (m^—ntK2), (7) 

F'=^2gNNaNA' (Mn- MA)I ( M A
2 - M*) 

+^2gAzaN^(M^-MP)/(Mp
2-~M^), 

for A —> p+7r~ and similar expressions for other decays. 
The full expressions for F and F' are given at the end 
of the next section, by (16)-(20), in terms of the 
dimensionless weak coupling constants c's defined 
by (9). 

In the pole approximation, both F and F1 are real, 
if Hs(x) and Hw(x) are time-reversal invariant. One 
notices that gss does not appear in the pole approxima­
tion. Some of the relative signs of the coupling constants 
remain undetermined in this approximation, because 
F and Ff either remain unchanged or change signs 
simultaneously when 

(a) all the strong or weak coupling constants 
change signs, 

(b) all the coupling constants which involve the 
kaon change signs, or (8) 

(c) all the coupling constants which involve the A-
particle change signs. 

III. DIMENSIONLESS COUPLING CONSTANTS 

The strong coupling constants defined by (4) are 
all dimensionless and the usual renormalized coupling 
constants for the strongly interacting particles. The 
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weak coupling constants denned by (6) are not yet 
dimensionless. The baryon constants are of the dimen­
sion of energy and the boson constants are of the 
dimension of energy squared. We introduce in the 
present work the dimensionless coupling constants 
c by 

aNA= (MA—MN)CNA, aNK = (MA—MN)CNA , 

aNx= (MZ—MNJCNZ, aNz = (M^-MN)cNz , 

^AH= (MZ~MA)CAZ , aAg'= ( M E - M A W , (9) 

aSH= (-Ms—Ms)css, az% = {M%—M^)c^z , 

aTK= (mK
2—m£)cTK, 

where the masses are to be identified as those of the 
respective members of the charge multiplets with 
which the above constants a are associated in (6). 

The basic motivation for the mass units in (9) is 
simply as follows. For example, the constant CLNA is 
defined, according to (3), with respect to n and A and, 
therefore, the mass units should be either MA+MU or 
MA—MU. We assume the latter because the appropriate 
energy unit in the decay is the mass difference. 

Instead of (6), one may write the effective weak 
Hamiltonian as4 

HW=—CNA—(Nyt 
dx, 

-( d d \ 
HA) — CNANI 7M75+75TM )A 

\dxu dxj 
d /6V+ dK~\ 

VZCWS—( X - - 7 T + — ) , (10) 
dx^\dXfjL dx^ / 

where the derivative operator in the second term is to 
apply to the nucleon field and dots stand for the obvious 
terms for other baryon vertices. One observes that there 
are no mass factors in (10) and this expression is 
constructed primarily in terms of vectors and pseudo-
vectors, whereas the expression (6) is written in terms 
of scalars and pseudoscalars. One also notices that the 
vectors in (10) are the usual weak vector currents. For 
this reason, one may call the weak coupling constants 
c the weak vector or pseudovector coupling constants. 

The effective weak Hamiltonian, valid in the same 
sense as (6) and (10) in the leptonic decays of pions 
and kaons, can be written as 

Hw=— i(cv-/mr)(}fall(l+y6)\l/v)(dT-/dXtl) 

- i f e - / m K ) ( ^ ( l + 7 5 ) W ( ^ 7 ^ ) + H x , (11) 

where \j/ and ipv are the field operators for the charged 
lep ton and the neutrino, respectively. I t was found in 
the preceding paper1 that the dimensionless weak 
coupling constants cT- and CK~ have the same magni­
tude, that is, 

C i r -=c x -= l .S0X10- 7 . (12) 

The effective Hamiltonian (11) is constructed also 
primarily in terms of vectors and pseudovectors. There­
fore, the c's in (11) may be called also the weak 
vector (or pseudovector) coupling constants. 

If one assumes a simpler effective Hamiltonian 

d d 
Hw= —cNA—(NyfiA)±cNA-—(NylxybA) 

OXfj, OXfi 

d /dlT+ dK~\ 
^2CTK—( K--T+ 

dxAdXn dxu J 
(13) 

instead of (10), the dimensionless coupling constants 
defined by (13) are related to the a's in (6) by 

aNA= (MA—MN)CNA, aNA=± (MA+MN)CNA , 
(14) 

If the dimensionless coupling constants are defined by 

aNA= (MA+MN)CNA, aNA=± (MA—MN)CNA , 

a*K = (m^+m^CrK , 

(15) 

one does not find any simple effective Hamiltonian of 
the vector type. 

As long as the weak coupling constants are regarded 
as adjustable parameters, the mass units in (9), (14), 
and (15) are all equivalent. However, if one assumes 
that the dimensionless coupling constants c have all 
the same magnitude, the consequence of this universal­
ity depends critically on the respective mass units, as 
is seen in the next section. 

Finally the full expressions for F and F' in (1) are 
summarized in terms of the dimensionless coupling 
constants c defined by (10). 

For A—>^+7r~: 

F = V2gNNCNA — ̂ 2gA2CN2 — V2gNACirK ,. 

(MA-Mn 

| v 2 g A W . (16) 

4 This was pointed out to the authors by K, Nishijima (private 
communication). 

Ff=-[ WgNNCNA 
\MA+MJ 

/M?+-Mp\ 
_ V 

\Mx++MP/ 

ForS+->^+7r ° : 

F = ^gNNCN2 — ̂ gz-2CN2+V2gNzCwK , 

/Mn+—Mp\ 
Ff=-[ WgNNCN* 

\M^+MPJ 
/M^-Mp\ 

- v2g s s <W. (17) 
\M^+MPJ 

file:///dXfjL
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TABLE I. Summary of theoretical and experimental values for the decay rate, w in 1010 sec-1, and the parameters a, 0, 7, defined by 
(21), for various pionic decays of hyperons. The theoretical values are based upon the pole approximation, (16) to (20), with the 
universal coupling scheme (22) and the particle masses taken from Ref. a. This approximation assumes the time-reversal invariance, 
which makes 0 vanish identically, and also AI = J. Therefore, the table does not include the figures for A —> w+7r° and S° —>w+A. 

Decay mode • p+TT s + _^ p+7ro s + _> n+n • n-\-Ti > A + 7T 

w, theor. 
exp. 

a, theor. 
exp. 

0, exp. 
7, theor. 

exp. 

0.34 
0.26a 

+0.49 
+0.61 ±0.05* 
-0.19±0.19d 

+0.87 
+0.78±0.04d 

0.89 
0.64a 

-0 .72 
-0.79±0.09 c 

0.70 

1.28 
0.64a 

0 
-0.05±0.08 c 

1 

0.29 
0.63a 

-0 .31 
-0 .16±0.21 c 

-0 .95 

0.23 
0.7la 

-0 .77 
- 1 . 0 +0.33b 

+0.68±0.27d 

+0.64 
+0.63±0.31d 

» M. Roos, Rev. Mod. Phys. 35, 314 (1963). b L. Bertanza, V. Brisson, P. L. Connolly, E. L. Hart, I. S. Mittra et al., Phys. Rev. Letter's 9, 229 (1962). 
« R. D. Tripp, M. B. Watson, and M. Ferro-Luzzi, Phys. Rev. Letters 9, 66 (1962). d Summary by F. S. Crawford, in Proceedings of the 1962 International Conference on High-Energy Nuclear Physics at CERN (CERN, Geneva, 1962), 

p. 827. 

ForS+- t+n 

F=2gNNCN-2—gA2CNA—g2'2CN2 , 

/Mz+-Mp\ /MK-MU\ 
F'=—( )2gNNCN^—[ )gKJfiNL 

\MZ++MJ \ML+MJ \Mk+Mn 

\M^+MJ 

For 2~—> n+T~: 

(M^ — Mn 

(18) 

gSS^iVS 

/MK—Mn 
- )gA2CNA+[ J 

(19) 

\MA+M. 

For E~ —> A+7r~: 

F = v5gA2CSH—^SSCAg+V2gASC»X , 

fM^—Mn 

gSS^iVS 

/Mz—M2-\ 

"=-( % W 
W S - + M W 

- N W A S ' . 
\M**+MJ 

(20) 

IV. COMPARISON WITH EXPERIMENTS 

In the pionic decays of hyperons, experiments can 
determine the decay rate w and the real parameters a, 
0, and 7. These are expressed in terms of F and F' in 
(1) as 

w=\q\[(M-M'¥-fnT
2li(\F\*+\F'\2)/8TM2, 

a=2Re(F*F')/(\F\*+\F'\2), 

l3=2Im(F*F,)/(\F\*+\F'\*)J (21) 

7 = ( | ^ | 2 _ | j p l 2 ) / ( | j p | 2 + | ^ | 2 ) j 

with 

F / = { [ ( M + M / ) 2 - W 7 r
2 ] / [ ( l f - l f 0 2 - W 7 r 2 ] } 1 / 2 ^ ^ 

where a 2+/3 2+7 2= 1, M and Mr are the masses of the 

decaying hyperon and the nucleon (or A in the E decay), 
respectively, and | q | is the pion momentum in the c m . 
system. In (21), Ff and F are, respectively, the S-wave 
and P-wave amplitudes, and the asymmetry parameter 
a refers to the direction of the nucleon (or A in the 
S decay). All the available data are summarized in 
Table I. 

The theoretical values in Table I are computed in 
the pole approximation, (16) to (20), with the universal 
coupling scheme 

gNN= gAS= g S S = g E S = gNA = gN2 = gAE= 1 3 . 6 , 

CNA — CN2 — CAZ ~ £2E = CnK ~ CNA 

= cNJ = CAZ = cw' = 10-7 . (22) 

The upper figure in (22) corresponds to gNN2/^= 14.8, 
that is, 0.082 for the equivalent pseudoscalar-pseudo-
vector coupling constant squared. The lower figure 
in (22) is roughly 1/\E of the figure in (12). This 
factor was introduced because CVK refers to the neutral 
bosons as is seen in (6) and (9), whereas the c's in (12) 
refer to the charged bosons. Since all the coupling 
constants are real in (22), fi vanishes identically and is 
not shown in Table I. 

The agreement between the theoretical and experi­
mental values in Table I is satisfactory. One may 
conclude that the universal coupling scheme (22) is 
consistent with all the available data. 

The universal coupling scheme (22) is subject to 
ambiguities in the relative signs of the coupling con­
stants in (22). Some of these ambiguities are those 
listed in (8). However, one can show that there are no 
other theoretical values, besides those in Table I, which 
agree even qualitatively with the data, if one requires 
that the strong and weak coupling constants in (22) 
have, respectively, the same magnitudes. 

The proof of the above statement is as follows: Since 
a for both A —» p+ir~ and S + —> p-\-ir0 is quite large, Fr 

in (16) and (17) cannot be negligibly small, that means 
that 

gNN = #22 , gNNCNA = gAS^iVs' . ( 2 3 ) 

One then finds in (18) and (19), independently of the 
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relative sign of gAs to gNN, that Ff for 2~ —» w + x " 
becomes negligibly small, but F ' for S+—>w+7r+ 

remains appreciable. Since a for 2+ —» n+T+ is nearly 
zero, F in (18) must vanish, that is, that 

gNNCNV = gAS^ATA. (24 ) 

The observed signs of a for A —> p+ir~ and 2+ —> ^+7r° 
then requires that 

gNA^K = gNNCNA , gNHCvK = gNNCNX • (25) 

Similarly, one obtains 

gAsCss' = gss^As7, (26) 

because a for E~~ —* A+7r~ is quite large. If one requires 
for simplicity that 

gASCsE^gSE^AS, (27 ) 

which is analogous to (26), the observed sign of a for 
S~ —> A+7T~ determines that 

I t is easy to show that the relations (23) to (28) are all 
those which must be satisfied in order for the universal 
coupling scheme (22) to be consistent with the data. 
The theoretical values in Table I are independent of 
changes of signs of the coupling constants as long as the 
relations (23) to (28) are satisfied. 

One finds in the foregoing proof some important 
consequences of the universal coupling scheme (22). 
First, this universal scheme predicts that the 5 wave 
dominates in S + —> n-\-ir+ and the P wave dominates in 
Z~—>^+7r~. This can be checked experimentally by 
determining the sign of 7, because the theoretical 
values of 7 in Table I are almost unity in magnitudes. 
Secondly the above scheme predicts, in particular, that 

gNN = gSS , gNk/gNV = gAs/gSS , ( 29 ) 

which follows from (23) and (25). These relations 
are likely subject to some tests. Thirdly, F consists, in 
this scheme, of the kaon-pole terms alone in all the 
decays in Table I. In the case of 2 + - ^ n+ir+, there is 
no kaon pole and, therefore, F vanishes. Thus, the 
kaon pole plays a crucial role in this scheme. 

In the universal coupling scheme (22), both F and Ff 

are proportional to the numerical figures assumed in 
(22). Therefore, the theoretical values for a, 7, and the 
ratios among the decay rates are all independent of these 
figures in (22). A wide variation in the experimental 
values of a is, according to this scheme, due to casual 
cancellation among various pole terms. The figures for 
the decay rates in Table I imply that the pole approxi­
mation may be valid to some extent but cannot be very 
accurate, if the universal coupling scheme (22) is valid. 
This may be checked experimentally by determining 
if /3 is really small or not, because /3 vanishes identically 

in the pole approximation, as long as the time-reversal 
invariance is valid. One sees from (19) that a for 
1r—^n-\-Tf~ vanishes in this scheme, if one ignores a 
mass difference between 2° and A. Therefore, a relatively 
large value (—0.31) for this a in Table I is due entirely 
to this small mass difference. 

I t is added that the universal coupling scheme (22) 
is very similar to one of the solutions discussed in 
Ref. 2 and also the solution discussed by Fujii.5 

If a universal weak coupling scheme is introduced 
with respect to the mass units in (14), one assumes that 

tfiVA O'TTK dNK 

= • • • = = ± = • • - , (30) 
MK—Mn mK

2—nir
2 MA+MU 

where dots stand for the obvious terms. A reasonable 
agreement with data is obtained in this case with 

aNA/(MA— Mn)= •' • - 1 0 ~ 8 , g i w - g A s - g s s - g s s 

« ± ( g W 2 0 ) « ± ( g W 2 0 ) « ( g W 2 0 ) « 1 4 . (31) 

#JVA &TK dNk 

= . . . = = ± =..., (32) 
MA+Mn MK

2+m*2 MA-Mn 

which refer to the mass units in (15), one obtains a 
reasonable agreement with data with the positive sign 
for all the a"s in (32) and 

aNA/(MA+Mn)= ' ' • - 1 0 ~ 7 , gNN~gAZ~g22~gZZ 

« W 6 « - 2 g t f S « - g A s / 5 « 14, (33) 

or with the negative sign for all the #"s in (32) and 

W ( ^ A + M n ) = - - - « 1 0 - 7 , 
g 2 ™ - 2 g A 2 - g 2 2 - g E S ~ 1 4 , (34) 

giVA-giVS-gAE^O. 

In the above cases, the pion coupling appears to be 
universal except for the case of (34). However, the 
kaon coupling constants are too large to be reasonable 
in (31) and do not seem to be universal in (33) and (34). 
The cases (31) and (33) are also similar to some of the 
solutions discussed in Ref. 2. The case (34) is some­
what analogous to the solution discussed by Gupta,6 in 
the sense that no kaon poles are effective. 

One finds many other solutions which fit data in the 
pole approximation, if the coupling constants are 
regarded as adjustable parameters.7 We point out, 
however, that the solutions are very sensitive to the 
data to fit. Since the experimental uncertainties are 

5 A. Fujii, Phys. Letters 1, 75 (1962). 
6 S. N. Gupta, Phys. Rev^ 130, 1180 (1963). 
7 One of the most extensive work of this type is J. C. Pati, 

Phys. Rev. 130, 2097 (1963). 

gAZCvK=gzzCAZ . (28) If one assumes 
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quite large and, in addition, the pole approximation can 
hardly be very accurate, one never knows which solu­
tions of these may be of significance. 

If unitary symmetry8 is valid regarding the strong 
Hamiltonian, the strong coupling constants satisfy the 
relations 

gA?/gNN = 2(l-f)/^3, gNA/gNN=~(l + 2f)/^3, 

g2Il/gNN= 2 / , gN2/gNN= ( 1 - 2 / ) , (35) 

gX&/gNN = - ( 1 - 2 / ) , £ A E / W = ( l ~ 4 / ) / V J , < 

where the mixing parameter / is expected9 to be around 

4 0 r 3-

One can show that (35) cannot be consistent with the 
5 wave dominating in S+—> n+T+ and the P wave 
dominating in S~—*n+ir~. To see this, one puts F 
in (18) and F' in (19) equal to zero. Ignoring a mass 
difference between 2° and A, one obtains 

CNA=^3CN2, ^ A ' = [ V J / / ( 1 - / ) > * ^ (36) 

Then, the amplitudes in (16) are written as 

F= (2/3)^(l+2f)gNN(cN2+cvK), 

F = - A ( 2 / 3 ) 1 / 2 { [ 3 / + 2 ( l - / ) 2 ] / ( l - / ) } ^ i v ^ ^ (37) 

and the amplitudes in (17) become 

F=y/2(l-2f)gNN(cNii+crK), 

F'=-Ay/2(l+2f)gNNcNj[, (38) 

where A = ( M s — M N ) / ( M Z + M N ) and small mass 
differences are ignored. Since the same coupling con­
stants appear in (37) and (38), one finds that a for 
A—>P+TT~ and X+-^p+ir° can have different signs 
only when l > / > J. The lower bound for / is raised if 
7 for A —» p+w~ is required to have the observed sign. 
A simple calculation shows that the allowed region 
becomes l > / > 0 . 6 if a = - 0 . 7 for 2 + - ^ + 7 r 0 , and 
l > / > 0 . 7 if a=-l for 2+-^p+w°. This region of / 
can hardly accommodate the expected values.9 We point 
out that the above inconsistency is essentially due to 
the negative sign for gNA/gNN in (35). 

One can apply the same argument to the case when 
the P wave dominates in 2+ —» n-\-ir+ and the S wave 
dominates in 2~ —> n+ir~. In this case, (38) remain the 
same, but those factors in (37) which include / change 
as follows: 

l + 2 / - > [ 3 / - 2 ( l - / ) 2 ] / ( l - / ) , 

[ 3 / + 2 ( l - / ) 2 ] / ( l - / ) 

- > - [ 3 ( l + / ) - 2 ( l - / ) 2 ] / ( l - / ) . (39) 

•Y. Ne'eman, Nucl. Phys. 26, 222 (1961); M. Gell-Mann, 
Phys. Rev. 125, 1067 (1962). 

•See, for example, A. W. Martin and K. C. Wall, Phys. Rev. 
130, 2455 (1963). 

Thus, a for A—+p+7r~ and S+—>p-\-7r° can have 
different signs only when 

| > / > 0 . 3 2 or - 0 . 1 4 > / > - J . (40) 

If one regards the former as an allowed region, one 
obtains a reasonable agreement with data concerning 
A and 2 , with the values 

/ « 0.4, CNK ~ CNA ~ — 5cj\rS 

*x-Scm'**-c,K/2. (41) 

A more careful calculation shows that the above 
analyses are essentially correct. Thus, one may conclude 
that, if the unitary symmetry relations (35) are valid 
with / somewhere between 0 and \, the P wave must 
dominate in 2 + —> n+w+ and the S wave must dominate 
in 2"*-—>^+7r~. One does not find in this case any 
simple relationship among the weak coupling constants. 

However, the above conclusion should not be taken 
too seriously. We know that unitary symmetry8 is not 
rigorous and, therefore, the relations (35) are valid only 
approximately. Since the consequence of the unitary 
relation (35) is very sensitive to / , or the details of the 
relations (35), even small change in (35) might change 
the above conclusion. 

Our foregoing analyses agree only qualitatively with 
a recent work by Eberle and Iwao.10 The discrepancy 
appears to be due to some mistakes in their work.10 

V. SUMMARY AND DISCUSSION 

The main result of the present work is that all the 
available data concerning the pionic decays of hyperons 
are consistent with the assumption that the pole 
approximation1,2 is approximately valid and all the 
strong and weak coupling constants which appear in 
the residues of the pole terms have the same magnitudes 
as, respectively, the usual pion-nucleon coupling 
constant and the weak coupling constants determined 
for the leptonic decays of pions and kaons.1 

The strong coupling constants g are defined by the 
strong effective Hamiltonian (4) and are the usual 
renormalized coupling constants for the strongly inter­
acting particles. The weak coupling constants c are 
defined either by the weak effective Hamiltonian (6) 
and the mass units in (9), or by the weak effective 
Hamiltonian (10), whereas the weak coupling constants 
in the leptonic decays of pions and kaons are defined 
by the effective Hamiltonian (11). Since both (10) and 
(11) are of the vector-pseudovector type, one may 
regard the universal weak coupling scheme in (22) as a 
dispersion theoretic version of the usual V—A theory of 
the weak interaction. One should note, however, that 
no specific form of the weak Hamiltonian is assumed in 
the present work, except that this Hamiltonian is 
time-reversal invariant and satisfies the selection rule, 
A/=i. 

10 E. Eberle and S. Iwao, Phys. Letters 6, 302 (1963). 
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There are ambiguities in the relative signs of the 
coupling constants in the universal coupling scheme 
(22), because the theoretical values in Table I are 
independent of any change of the signs as long as the 
relations (23) to (28) are satisfied. Some of the rela­
tive signs which are fixed in this scheme are those in 
(29). 

One of the consequences of the universal coupling 
scheme (22) which can be tested experimentally is that 
the 5 wave dominates in 2+ —» n+ir+ and the P wave 
dominates in S~ —> n+w~. An experimental determina­
tion of the sign of the parameter y in (21) is sufficient, 
because the theoretical values for y are quite large in 
Table I. According to this scheme, a closer agreement in 
the decay rates in Table I can be attained only by going 
beyond the pole approximation. Thus, the figures in 
Table I suggest that the pole approximation cannot be 
very accurate. This may be checked experimentally by 
determining if the parameter fi is really small or not, 
because /3 vanishes identically in the pole approxima­
tion, as long as the time-reversal invariance is valid. 
The agreement for the asymmetry parameter a is 
better than is to be expected. One notices that a is 
identically zero for 2+ —» n+ir+ but is quite large for 
S~ —-> n+ir~. This difference in a is due to a small mass 
difference between 2° an A in the pole approximation, 
but could very well remain beyond the pole approxima­
tion, according to this scheme. Therefore, a more 
accurate determination of a for 2-—>7z+7r~~ is very 
desirable. 

The pole approximation1,2 allows many other solu­
tions,2,5-7 if the coupling constants are regarded as 
adjustable parameters. However, there does not seem 
to be any other universal scheme of both the strong and 
weak coupling constants, besides (22). This is quite 
satisfactory, because only the mass units in (9) are 
physically plausible, at least to the present authors. 
I t is, however, somewhat embarrassing that the 
universal weak coupling scheme in (22) is not consistent 
with the unitary symmetry relations (35) for the strong 
coupling constants. However, the strong coupling 
constants defined in the present work refer to the full 
strong Hamiltonian and, therefore, do not satisfy the 
rigorous unitary symmetry relations (35) because 
unitary symmetry is not strictly valid. As is seen in 
the analyses in Sec. IV, the consequence of the unitary 
symmetry relations (35) is very sensitive to / , and thus, 
to the details of (35). Therefore, the above inconsistency 
does apply to the relations (35), but may not necessarily 
apply to unitary symmetry in the usual sense. 

According to Pais,11 a possibility that 

g A 2 = ± g S 2 , gtfA==bgtfS, g A S = ± g S S , (42) 

with either the positive sign or the negative sign in all 
the terms in (42), contradicts the experimental data, 
provided the mass difference between A and 2 does not 
affect the argument. The first two equations in (42) are 
formerly the same as the second equality in (29). I t is 
pointed out, however, that the above argument11 does 
not apply to the universal coupling scheme (22). This is 
because the coupling constants in (22) are the renormal-
ized coupling constants, whereas those in (42) are the 
unrenormalized ones which appear in the strong Hamil­
tonian. Therefore, there ;s no reason why the argument 
of Ref. 11 should apply to those in (22). 

I t is often argued that the isospin § for the T—S 
resonance at 1535 MeV would be very difficult to explain 
in terms of a universal strong coupling scheme such as 
(22), because the isospin for the corresponding IT—N 
resonance is f. However, the differences in masses and 
strangeness for these systems are very likely to cause 
large differences in the coupling of these systems with 
the K—A and/or K—2 systems. In view of the complex­
ity of the origin of the resonance, the present authors 
feel that one should not accept the usual argument 
without a detailed analysis of these resonances. 

Several authors12,18 discussed a universal weak cou­
pling scheme in which a weak Hamiltonian of the type 
of (11) was extended to the pionic decays of hyperons. 
This scheme explains the experimental decay rates in 
Table I within a factor of three but fails to explain the 
experimental asymmetry parameters in Table I. This 
is to be expected from the present dispersion approach, 
because the weak Hamiltonian (11) may be regarded 
as an effective weak Hamiltonian in the case of the 
leptonic decays of pions and kaons, but a weak Hamil­
tonian of the type of (11) extended to the pionic decays 
of hyperons cannot have any simple significance 
because the pionic decays of hyperons have too compli­
cated structures to make any simple effective Hamil­
tonian of the type of (11) of any use. 
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